Graph Sketching Using Derivatives

1. Sketch a graph of a differentiable function \(f(x) \) over the closed interval \([-2, 7]\), where \(f(-2) = f(7) = -3 \) and \(f(4) = 3 \). The roots of \(f(x) = 0 \) occur at \(x = 0 \) and \(x = 6 \), and \(f(x) \) has properties indicated in the table below:

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x & -2 < x < 0 & 0 < x < 2 & x = 2 & 2 < x < 4 & x = 4 & 4 < x < 7 \\
\hline
f'(x) & \text{positive} & 0 & \text{positive} & 1 & \text{positive} & 0 & \text{negative} \\
f''(x) & \text{negative} & 0 & \text{positive} & 0 & \text{negative} & 0 & \text{negative} \\
\hline
\end{array}
\]

2. Sketch a graph of the continuous even function \(g(x) \) over the closed interval of \(x \) values \([-5, 5]\) having a range of \(g(x) \) values \([-1, 0]\). For \(x \geq 0 \), roots of \(g(x) = 0 \) occur at every whole number \(k \) and roots of \(g'(x) = 0 \) occur at \(\frac{k}{2} \). The first and second derivatives of \(g(x) \) exist everywhere except at \(x = k \). Furthermore, \(g''(x) > 0 \) for every \(x \neq k \).
3. Sketch a function \(h(x) \) from the following information:

(a) \(h(-x) = -h(x) \)

(b) \(\lim_{{x \to 0^+}} h(x) = \infty \)

(c) \(\lim_{{x \to +\infty}} h(x) = 0 \)

(d) For \(x > 0 \), \(h(x) = 0 \) only at \(x = 1 \)

(e) For \(x > 0 \), \(h'(x) = 0 \) only at \(x = 2 \)

(f) For \(x > 0 \), \(h''(x) = 0 \) only at \(x = 3 \)

Concept Connectors

4. The graph of \(f(x) \) is shown on the closed interval \([-6a, 6a]\):

Answer the following questions regarding \(f(x) \):

(a) For \(x \neq 0 \), the graph of \(f(x) \) has symmetry about the ________________.

(b) \(f \) has point(s) of discontinuity at \(x = ________________ \).

(c) \(\lim_{{x \to 0}} f(x) = ________________ \).

(d) The zeros of \(f(x) \) occur at \(x = ________________ \).

(e) \(f'(x) \) does not exist at \(x = ________________ \).

(f) \(f''(x) < 0 \) for the \(x \) interval(s) ________________.