1. Sketch the following curves, indicating maximum and minimum points and points of inflection. Show all work and graph on a separate graph paper. *Use graphing calculator only to check your work!*

1. \(y = 6 - 2x - x^2 \)

2. \(y = 12 - 12x + x^3 \)

3. \(y = x^3 - 3x^2 + 4 \)

For #3:

Derivative: ____________________________

Increasing on \((__,__) \), \((__,__) \)

Decreasing on \((__,__) \)

Relative maximum at \((__,__) \)

Relative minimum at \((__,__) \)

Second derivative: ____________________________

Concave Up on \((__,__) \)

Concave Down on \((__,__) \)

Point of Inflection at \((__,__) \)
II. Sketch a smooth curve illustrating the following characteristics or properties:

4. If \(y \) is a function of \(x \) such that \(y' > 0 \) for all \(x \) and \(y'' < 0 \) for all \(x \), sketch the curve.

5. Sketch \(y = f(x) \), given that

 \[
 f(1) = 0 \\
 f'(x) < 0 \quad \text{for } x < 1 \\
 f'(x) > 0 \quad \text{for } x > 1
 \]

6. Sketch \(y = f(x) \), given that

 \[
 f(1) = -2 \\
 f''(x) < 0 \quad \text{for } x < 1 \\
 f''(x) > 0 \quad \text{for } x > 1
 \]

7. Sketch \(y = f(x) \), given that

 \[
 f(-2) = 8 \quad \text{and } f'(-2) = 0 \\
 f(0) = 4 \\
 f(2) = 0 \\
 f''(x) < 0 \quad \text{for } |x| < 2 \\
 f''(x) < 0 \quad \text{for } x < 0 \\
 f''(x) > 0 \quad \text{for } x > 0 \\
 f'(x) > 0 \quad \text{for } |x| > 2
 \]
8. Sketch the function which is
 Increasing on \((-\infty,0)\) and \((2,\infty)\)
 Decreasing on \((0,2)\)
 Concave up on \((1,\infty)\)
 Concave down on \((-\infty,1)\)
 Relative maximum at \((0,4)\)
 Relative minimum at \((2,0)\)
 Point of inflection at \((1,1)\)

9. Sketch the curve with
 y-axis symmetry
 horizontal asymptote: \(y = 0\)
 vertical asymptotes: \(x = -2, x = 2\)
 increasing on \((0,2)\) and \((2,\infty)\)
 decreasing on \((-\infty,-2)\) and \((-2,0)\)
 concave up on \((-2,2)\)
 concave down on \((-\infty,-2)\) and \((2,\infty)\)
 \(f(0) = 2\)

10. Sketch the curve which is
 Increasing on \((-\infty,0)\) and \((1,\infty)\)
 Decreasing on \((0,1)\)
 Tangent with undefined slope at the origin
 Horizontal tangent at \((1,-1)\)
 Concave up for all \(x\) except \(x = 0\)
 No concavity at \((0,0)\)