4.3 How Derivatives Effect the Shape of a Graph
Math 1271, TA: Amy DeCeles

1. Overview

Increasing and Decreasing

The first derivative gives increasing/decreasing information about the original function:

\[f'(x) \text{ positive } \rightarrow \text{slope of the tangent is positive } \rightarrow f(x) \text{ is increasing} \]
\[f'(x) \text{ negative } \rightarrow \text{slope of the tangent is negative } \rightarrow f(x) \text{ is decreasing} \]

The only places where \(f \) can switch from increasing to decreasing are when \(f'(x) = 0 \) or \(f'(x) \text{ DNE.} \)

Note: Watch out, these numbers are not necessarily critical numbers, because critical numbers have to be in the domain of \(f(x) \)! For example \(f(x) = \frac{1}{x} \) switches from increasing to decreasing at \(x = 0 \), but \(x = 0 \) is not a critical number because it is not in the domain of \(f \).

Local Maxima and Minima

Remember from 4.1 that critical numbers are the only possibilities where local max/min may occur. (A local max/min surely must occur at a place in the domain where \(f \) switches from increasing to decreasing or decreasing to increasing.) So we find the places where local max/min occur by checking each critical number \(c \):

\[f'(x) \text{ negative to the left of } c, f'(x) \text{ positive to the right of } c \rightarrow \text{ local min at } c \]
\[f'(x) \text{ positive to the left of } c, f'(x) \text{ negative to the right of } c \rightarrow \text{ local max at } c \]

If the sign of the derivative is the same on both sides of \(c \), then there is neither a local min nor a local max at \(c \). This way of checking the critical numbers is called the first derivative test.

Concavity

The second derivative gives concavity information about the original function:

1. \(f''(x) \text{ positive } \rightarrow f(x) \text{ concave up} \)
2. \(f''(x) \text{ negative } \rightarrow f(x) \text{ concave down} \)

The only places where \(f \) can switch concavity are when \(f''(x) = 0 \) or \(f''(x) \text{ DNE.} \)

Inflection Points

A point \((x, y)\) on the graph of \(f(x) \) is called an inflection point if \(f \) switches concavity at \(x \). (Note that an inflection point is a point with an \(x \)-value and a \(y \)-value.)

Note: Just because a function switches concavity at \(x \), that does not mean it will have an inflection point there. For example, \(f(x) = \frac{1}{x} \), \(f(x) \) switches concavity at \(x = 0 \), but \(f(x) \) is undefined at \(x = 0 \), so there is no inflection point there.

Local Maxima and Minima Revisited

Another way to check a critical number to see if a local max/min occurs there, is by checking concavity instead of increasing/decreasing. This is called the second derivative test. You can do this as long as \(f''(c) \) exists.